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LETTER TO THE EDITOR 

On the scaling properties of the energy spectrum of 
hydrogen in a uniform magnetic field 

H Hasegawa, S Adachi and H Harada 
Department of Physics, Kyoto University, Kyoto 606, Japan 

Received 22 July 1983 

Abstract. The magnetic-field scaling relation between the coordinates, momenta and the 
energy in the Hamiltonian for the Kepler motion in a uniform magnetic field, i.e. 

H ( 7 - ' 1 3 p .  y 2 I 3 r ;  y'13m, y = 1) = y - * 1 3 H ( p ,  r ;  m, y ) ,  

where y = B/Bo is the normalised field strength and m the constant value of the angular 
momentum B-parallel component, is shown to ensure a representation of the semiclassical 
energy spectrum: E = ( n  +f)-'f(y'13(n +f),  y113m) ,  m =o, *I, , . . ; n =o, I , .  . . , We 
discuss how the function f, in the two-dimensional approximation ( z  = pz = 0, z / / B ) ,  can 
be constructed. 

In computing quantal energy levels, several authors have utilised various scaling 
properties found in the (classical) Hamiltonian function for the hydrogen-like atom 
in presence of a uniform magnetic field B ; namely, that in terms of the nuclear charge 
(Surmelian and O'Connell 1974), of a mass ratio (Wunner and Ruder 1982) and of 
the B-parallel component of the angular momentum (Robnik 1981) (this is for 
computing the onset critical energy of irregular motions). Among such, it should be 
of great value for direct information about the quantal energy spectrum, if the scaling 
of the energy as a function of the action variables can be established. The reason is 
obviously that it provides a possible structure in representing the semiclassical energy 
eigenvalue against the quantum number that is related to a fixed action variable, if 
well defined. 

In their analyses of experiments, Fonck et af (1980) noted that the WKB quantising 
condition for the two-dimensional approximation to the above systems (i.e. p L  = z = 0, 
z / / B ,  in the Hamiltonian) can be expressed as a field-free form, if the energy and 
the action variable (or, the quantum number) are multiplied by B-2'3 and B1'3, 
respectively, for the special case L,  = m = 0 (the angular momentum z-component 
vanishes). This fact is equivalent to saying that the energy is given by a single function 
of the field, if the former is scaled by n-* and the latter by n - 3  where n represents 
the quantum number of the semiclassical quantisation, as pointed out by Feneuille 
(1982) who expressed the relation as 

E =f(P); E = n 2 E ,  p = n3B. (1) 

This form of stating the scaling law for the (two-dimensional) magnetised hydrogen 
atom, hereafter called Feneuille's form, seems to bear a fundamental significance 
because the field involved is entirely arbitrary in strength. For example, it unifies the 
convenient argument of both strong- and weak-field regimes by Rau (1977), and it 
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predicts a straight line of the plot n against B-1’3 at the ionisation threshold E = 0, 
which has been experimentally verified (Gay et a1 1980, Delande et a1 1982). 

This letter presents our consideration that (1)  can be extended to the case of 
non-vanishing value of L, = m in the form 

(2) 

(2a 1 
i.e. for the general value of L,  there exists a function of two variables such that, with 
the same cubic scaling of both quantum numbers n ( = O ,  1 , 2 . .  .) and 
m(= 0, *l ,  *2 . . .), Feneuille’s form (1)  can still be valid (the replacement of n by a 
half integer is due to the well known reason of the WKB procedure for ‘vibrations’). 
We argue that the generalised form (2) can be deduced from a certain scaling relation 
satisfied in the Hamiltonian for the Kepler motion in a magnetic field, where the 
function f can be constructed, at least within the two-dimensional approach, in terms 
of a set of parameter representations of the E against y relation?. 

Let H denote the Hamiltonian for a charged particle with unit mass under the 
combined action of uniform magnetic and fixed Coulomb fields, indicating it as a 
function of the canonical variables of the momentum vector p and the coordinate r 
together with the two parameters y and m ;  H ( p ,  r ;  m, y )  is given by 

( n  +;)‘E = f ( y ( n  +;)’, y m 3 ) ,  

y = BIBo = ihw/Ry (the normalised field strength), 

~ ( p , r ; m ,  y ) = i ( p + ( e / 2 c ) ~  xr)’-e2/r (3a) 

(w is the cyclotron frequency) with 

m = L, /h ,  y = ho/2Ry. (3c) 

H(y- ’13p ,  y213r; y113m, y = 1) = y-’13H(p, r ;  m, y ) .  (4) 

This is the unified form of the two scaling relations previously noted for m # 0 (Robnik 
1982, Harada and Hasegawa 1983), and may be considered as fundamental and 
generic to the diamagnetism of atoms. 

Suppose that the classical equations of motion with Hamiltonian (3) allow a set 
of trajectories that form an invariant torus located in a hypersurface of H = E  and 
L,  = m. It may be considered as embedded in the four-dimensional phase space 
( p p r p ; p z , z )  with fixed m (see (36)) and with the topology of the two-dimensional 
two-torus. Since the Hamiltonian is non-separable, such a situation may occur in 
restricted ranges of the constants E and m, i.e. in an approximately integrable region 
for the constant hypersurfaces (called a ‘remnant’, see Reinhardt and Farrelly (1982)). 
Then, two independent action variables JI and JZ should be well defined by Jcip dr (i = 
1,2)  with closed integration contours C1 and Cz that are topologically distinct but 
each continuously deformable without changing the integrals on the torus. What is 
the significance of the fundamental scaling relation (4), when applied to these action 
variables? 

The answer to this question can be written down by specifying the two action 
variables as functions of E and A (A denotes an unknown variable to specify, together 
with E, the two-dimensional torus) as well as of the parameters m and y ; Ji(E, A; m, y ) .  

Then it is easy to see that the following relation holds: 

t See our note added at the end about the recent paper by Gallas er a1 (1983). 
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Since the action variable Ji represents the area inside the contour Ci, the scaling 
p + y-1/3p, r + y2l3r implies that Ji + y 1 l 3 J i ;  thence 

i = 1 ,2 .  ( 5 )  

Or, by considering the inverse function of J1(E, A) and J2(E, A) with parameters m 
and y being fixed, we get 

-1 /3  
y Ji(y-2’3E, A,; y 1 / 3 m ,  1)  =Ji (E ,  A; m,  y ) ,  

y 2 / 3 ~ ( y 1 / 3 ~ 1 ,  y 1 / 3 ~ 2 ;  y 1 l 3 m ,  1)  = E ( J ~ , J ~ ;  m,  y ) .  (6) 

Note that the result is irrespective of the y scaling of the unknown variable A indicated 
as A, in ( 5 ) .  Let us fix our attention on the first action variableJ1 = J  whose periodicity 
of motion is assumed as ‘vibration like’ (as contrasted to the rotation-like periodicity 
for m ) ,  and forget about the second oneJ2. The desired representation of the quantised 
energy 

(7) E = (n  + f)-’f(y ‘ l 3 ( n  + f), y ‘ l3m ) 

is a consequence of the EBK quantisation (Percival 1977) 

J = p dr = (n +i)h  

and of defining the function f ( J ,  m )  by 

Feneuille’s form (2) may be obtained by an appropriate redefinition of the variables 
in f in the above. We also note that the full knowledge about .Ti(€, A; m,  y ) ,  i = 1 ,2 ,  
provides us with the complete representation in terms of the three sets of quantum 
numbers (n, k ,  m )  in the form 

E = ( n  +$2f(y1/3(n +f), y1/3(k +a/4), y 1 ’ 3 m ) .  

Thus, the problem of quantising the hydrogen atom in a magnetic field of arbitrary 
strength (in a semiclassical version) reduces to determination of the two action variables 
on the invariant torus, as far as it exists, for one particular value of the field (e.g. 
y = 1) but as functions of E, A and m .  Here, we discuss a more detailed procedure 
of constructing the function f in (7) under the approximation of z = p z  = 0 in (36) of 
the Hamiltonian in the cylindrical coordinates sytem. This makes the problem 
effectively one-dimensional, and has been used for investigation of the quasi-landau 
resonances QLR (Edmonds 1970, Starace 1973, Gallas and O’Connell 1982a, b) in 
terms of the explicit form of J ( E ;  m,  y): 

where p1,2 (pl <p2)  are the two real positive roots of the square root. 
It is necessary to invert the function J = J ( E ;  m,  y )  with respect to E for the 

representation (7) and we will show that this can be facilitated by a set of parameter 
representations. The problem for the special case m = 0 was solved by Akimoto and 
Hasegawa (1967) before the discovery of QLR: there exist two functions of a parameter 
U ,  F ( u )  and G ( u )  through which 

y = F ( u ) / ( n  +f)’ and E = G(u) / (n  +f)’. (11) 
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This implies automatically the validity of Feneuille's form, and therefore 

E = (n + i ) - 2 f ( y  'I3(n + f)) (m = 0 in (7)) 

with f (x )  = G ( { F - ' ( x ) } ' ' ~ ) .  
The notation U for the parameter in the representation (11) is different from the 

original one in Akimoto and Hasegawa (1967). These authors discussed how the 
analytic representation (11) can be used to study the y dependence of the energy 
spectrum: for example, the weak-field and strong-field behaviours can be correctly 
derived. (In Gallas and O'Connell (1982a), an incorrect formula has been pointed 
out for dE/dn expressed in terms of the complete elliptic integrals in the above paper. 
This is due to the complexity of transformation into the standard form of the elliptic 
integrals given in the appendix. We note that there is nothing wrong in the main part 
of Akimoto-Hasegawa, which we have reconfirmed.) Here, for future purposes we 
present an account of how to derive (1 1) without recourse to the use of elliptic functions. 

Following Gallas and O'Connell (1982a), we factor the inside of the square root 
of the integrand in ( lo),  so that €or m = 0 

(12a) 

and a 2 + i p i  = (8e2/w2)pi', (126) 

(12c) 

-p3 + 8Ep/w2 + 8e2/u2 = (po-p)[(p - b)2 +a2], 

from which 
b = -t 

2 Po 

2 3 2  
U - ~ p o  = -8E/w2. 

Equations (126) and (12c) are combined to give 

(UB:  Bohr radius, Ry: Rydberg energy). ( 1 2 4  
Po 

Then the parameter U may be introduced as 

U = (pO/2aB)3y2, (13) 

so that the U representation (11) is available, if the classical turning distance po can 
be eliminated from 

(14) 
3/2 1/2 E = (2a~/Po)(U - 1)RY, y=(2aB/pO) U . 

But this is possible by rearranging the integral for J :  

1/2  1 1 / 2  

(15) 
1 - x  Pll 

J = 2 lo [ 2 (E - V (  p 111 dp = (*) 4h I (-[U (x + x + 11) dx. 
20 B o x  

Thus, we can set 

obtaining 
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These indicate, in (1 1) in terms of @ ( U )  given by (16), 

F ( u )  = U 1/2{@(u)}3 and G ( u )  = (U - 1){@(U)}2Ry. (18) 

It may be remarked here that the plausibility of the half-integer quantum number for 
the above case of m = 0 (absence of the centrifugal potential) can be assured from a 
more detailed analysis of the wavefunction near the turning point p =po  as well as 
p = 0, as discussed in Akimoto and Hasegawa (1967). 

We briefly summarise a feature of the representation (17). The function l@(u) 
defined by (16) is smoothly v:rying for O ~ U  <CO, with @(0)=(2/7r) 5, (1 - 
x)1/2x-1'2 dx = 1,  @(4) = (41 .4  J, (1  - x ) 1 / 2 x - " 2 ( ~ + x )  dr =$, and @(U >> 1)-  
tu 'I2 + T - ' U - ' ' ~  log U (asymptotic expansion). Thus, the field variation y = 0 + CO 

corresponds to the U variation U = O+ CO, and from (17) the negative energy-range is 
represented by the interval UE[O,  13, where @ ( U )  changes only slightly: 

@(O)= l + @ ( u ) =  1 + 6 u + .  . . + @ ( 1 ) = ( 2 / 3 ~ r ) B ( $ , a )  

= 1 . 1 5 9 . .  . ( B ( .  , .): the beta function). (19) 

The power series expansion (19) yields the low-field regime (quadratic Zeeman 
regime), while the asymptotic expansion of @ ( U )  for U >> 1 yields the quasi-Landau 
regime in the sense of Rau (1977), as shown in table 1.  

Table 1. The low-field and high-field expressions of the energy derived by a power-series 
and an asymptotic expansion of @(U), (16). 

O < U < l  1 <c U 

@(U i = 1 +&U @ ( U ) - t U 1 / 2 ( 1  + ( 2 / d u , - 1  log U )  

F ( u )  = u"2(1  +&U) 
G ( u  i = -1 +;U 
E = -(n + i ) - 2 + $ ( n  +f )4y2  

F(U)-:U2(1+(6/r)u-  log U )  

G (u )  - $4' 

E = y ( 2 n  + 1)- C * ( y / ( 2 n  + l)i"2 (energy in unit of Ry) 

t C = (6/.rr)C0, where CO is appropriately chosen to replace log U. 

Feneuille (1982) noted that the existence of the single function f(P) for the scaled 
energy-field relation provides two formulae for mean values: these are, in the two- 
dimensional approach, given by 

where 

We have ascertained them in detail, and obtained a further reduction in terms of our 
parameter representation as follows: 

2 { @ ( U ) } 2  (1  +u)@(u)+2(u - U 2 ) @ ' ( U )  

@(U) +6ucD'(u) 

8(n +1)4 @(u)-2(1 -u)@'(u) 
{ @ ( u ) } ~  @ ( U )  + 6u@'(u) (P'> = - (length in units of uB). (226) 
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Finally, let us discuss how the parameter representation (17 )  can be extended to 
the general case of m # 0. The procedure of factoring the square-root in the WKB 
integrand for m = 0 suggests that it can be done by setting (Gallas and O'Connell 
1982b) 

Clearly, the lower turning point p1 tends to 0 for the limit m + 0 (see figure l), and 
here let us define 

Po" P1 +P2. (24) 

Figure 1. The potential function V ( p )  in the cylindrical coordinate system of the two- 
dimensional hydrogen atom; form # 0 (presence of the centrifugal part) ahd the limit m --* 0. 

Then, the introduction of the parameter U in ( 1 3 )  still works by replacing ( 1 2 6 )  and 
( 1 2 ~ )  by 

a 2  + ip'o = 4(m h ) 2 / 0 2 p l p 2  ( 2 5 ~ )  

= ( 8 e 2 / 0 2 ) p i 1    PIP^, ( 2 5 6 )  
2 a 2 - a p i  = 8 E ' / w  -p1p2. 

Here, one more parameter is needed, for which we define 

u = P l I ( P l + P 2 )  and so 1 - U  = p 2 / ( p 1  + p 2 ) .  (26) 

The condition P I <  p2 implies 

O < U C l .  

The WKB integral (15) now becomes 

J = 2 jpy[2(E'- V ( p ) ) l ' " d p  

1/& 
1/2 1-v  =(e) 4hj" { ( 1 - u - x ) ( x - u ) [ U ( x + x 2 ) + U z , ( 1 - u ~ + 1 ] }  X . 
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Consequently, by defining 

2 1 / 2 g  
@(U, ((1-U - X ) ( X - U ) [ U ( X  +x2)+uu( l -u)+11}  , 

X 

L509 

(28) 

we obtain the uu representation as follows: 

The last relation indicates that U is solvable in terms of U and %. through 

(30) U ( l - u ) = ( 2 U ) - ’ [ - l + ( l + p  2 U 2 /3  1/2 I, 

and therefore by denoting @ & ( u ) = @ ( u ,  U ( U ,  p ) )  

Thus, it generalises the representation (17) for m = 0 to m # 0, verifying directly the 
form (7) by virtue of (29). 

Very recently, Gallas et a1 (1983) have presented a discussion of Feneuille’s scaling 
law based on their own approach to solving the pertinent Schrodinger equation as 
well as on the WKB integral (10) in their belief that the law is more than a conjecture. 
We emphasise here that the law stems from the most accurate scaling relation (4) 
together with the EBK quantisation (8) so that its validity is not restricted to the 
two-dimensional model, and that our procedure of the parameter representation for 
the model proves the validity explicitly. 

HH wishes to thank Professor A R Edmonds for useful comments and Professor 
R F Streater for his warm hospitality. 
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